Area of a Circle

1. Calculate the area of the circle, rounding your answer to one decimal place.

2. Calculate the area of the circle, rounding your answer to one decimal place.

In questions three to six, the area of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to one decimal place.
3.

4.

5.

6.

7. Calculate the shaded area of the shape, rounding your answer to three significant figures.

8. Calculate the shaded area of the shape, rounding your answer to three significant figures.

9. Calculate the area of the shape, rounding your answer to two decimal places.

10. A $2 p$ coin has a diameter of 26 mm and a $5 p$ coin has a radius of 0.85 cm . Ben has $2 p$ and $5 p$ coins with a total value of $12 p$.

Calculate the total area of these coins, giving your answer in square centimetres. Give your answer in terms of π.

Area of a Circle Answers

1. Calculate the area of the circle, rounding your answer to one decimal place.

$$
\begin{aligned}
& \mathrm{A}=\pi \times 3^{2} \\
& \mathrm{~A}=28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Calculate the area of the circle, rounding your answer to one decimal place.

$$
\begin{aligned}
& 7.4 \div 2=3.7 \\
& \mathrm{~A}=\pi \times 3.7^{2} \\
& \mathrm{~A}=43.0 \mathrm{~cm}^{2}
\end{aligned}
$$

In questions three to six, the area of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to one decimal place.
3.

$$
\text { Radius }=\sqrt{\frac{17}{\pi}}=2.3 \mathrm{~cm}
$$

4.

$$
\text { Diameter }=2\left(\sqrt{\frac{13.2}{\pi}}\right)=4.1 \mathrm{~cm}
$$

5.

$$
\text { Diameter }=2\left(\sqrt{\frac{22.14}{\pi}}\right)=5.3 \mathrm{~mm}
$$

6.

$$
\text { Radius }=\sqrt{\frac{399.7}{\pi}}=11.3 \mathrm{~m}
$$

7. Calculate the shaded area of the shape, rounding your answer to three significant figures.

$$
\begin{aligned}
& \text { Area of rectangle }=9 \times 7=63 \mathrm{~cm}^{2} \\
& \text { Area circle }=\pi \times 1.5^{2}=7.068 \ldots \\
& \text { Shaded area }=63-7.068 \ldots=55.9 \mathrm{~cm}^{2} \text { (3s.f.) }
\end{aligned}
$$

8. Calculate the shaded area of the shape, rounding your answer to three significant figures.

$$
\left(\boldsymbol{\pi} \times 7.5^{2}\right)-\left(\boldsymbol{\pi} \times 5^{2}\right)=98.2 \mathrm{~cm}^{2}
$$

9. Calculate the area of the shape, rounding your answer to two decimal places.

$$
\frac{3}{4} \times \pi \times 3.5^{2}=28.86 \mathrm{~cm}^{2}
$$

10. A 2 p coin has a diameter of 26 mm and a 5 p coin has a radius of 0.85 cm . Ben has $2 p$ and $5 p$ coins with a total value of $12 p$.

Calculate the total area of these coins, giving your answer in square centimetres. Give your answer in terms of π.
$12 p$ is $2 \times 5 p+1 \times 2 p$
$26 \mathrm{~mm}=2.6 \mathrm{~cm}$
Area of $5 p$: $\pi \times 0.85^{2}=0.7225 \pi$
Area of $2 \mathrm{p}: \pi \times 1.3^{2}=1.69 \pi$
Total area of $12 p=0.7225 \pi+0.7225 \pi+1.69 \pi=3.135 \pi \mathrm{~cm}^{2}$

Area of a Circle

1. Calculate the area of the circle, rounding your answer to one decimal place.

\qquad
\qquad
\qquad
\qquad
2. Calculate the area of the circle, rounding your answer to one decimal place.

\qquad
\qquad
\qquad
\qquad

In questions three to six, the area of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to one decimal place.
3.

4.

5.

6.

7. Calculate the shaded area of the shape, rounding your answer to three significant figures.

\qquad
\qquad
\qquad
\qquad
8. Calculate the shaded area of the shape, rounding your answer to three significant figures.

\qquad
\qquad
\qquad
\qquad
9. Calculate the area of the shape, rounding your answer to two decimal places.

\qquad
\qquad
\qquad
\qquad
10. A $2 p$ coin has a diameter of 26 mm and a $5 p$ coin has a radius of 0.85 cm . Ben has $2 p$ and $5 p$ coins with a total value of $12 p$.

Calculate the total area of these coins, giving your answer in square centimetres. Give your answer in terms of π.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Area of a Circle Answers

1. Calculate the area of the circle, rounding your answer to one decimal place.

$$
\begin{aligned}
& \mathrm{A}=\pi \times 3^{2} \\
& \mathrm{~A}=28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Calculate the area of the circle, rounding your answer to one decimal place.

$$
\begin{aligned}
& 7.4 \div 2=3.7 \\
& \mathrm{~A}=\pi \times 3.7^{2} \\
& \mathrm{~A}=43.0 \mathrm{~cm}^{2}
\end{aligned}
$$

In questions three to six, the area of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to one decimal place.
3.

$$
\text { Radius }=\sqrt{\frac{17}{\pi}}=2.3 \mathrm{~cm}
$$

4.

$$
\text { Diameter }=2\left(\sqrt{\frac{13.2}{\pi}}\right)=4.1 \mathrm{~cm}
$$

5.

$$
\text { Diameter }=2\left(\sqrt{\frac{22.14}{\pi}}\right)=5.3 \mathrm{~mm}
$$

6.

$$
\text { Radius }=\sqrt{\frac{399.7}{\pi}}=11.3 \mathrm{~m}
$$

7. Calculate the shaded area of the shape, rounding your answer to three significant figures.

$$
\begin{aligned}
& \text { Area of rectangle }=9 \times 7=63 \mathrm{~cm}^{2} \\
& \text { Area circle }=\pi \times 1.5^{2}=7.068 \ldots \\
& \text { Shaded area }=63-7.068 \ldots=55.9 \mathrm{~cm}^{2} \text { (3s.f.) }
\end{aligned}
$$

8. Calculate the shaded area of the shape, rounding your answer to three significant figures.

$$
\left(\boldsymbol{\pi} \times 7.5^{2}\right)-\left(\boldsymbol{\pi} \times 5^{2}\right)=98.2 \mathrm{~cm}^{2}
$$

9. Calculate the area of the shape, rounding your answer to two decimal places.

$$
\frac{3}{4} \times \pi \times 3.5^{2}=28.86 \mathrm{~cm}^{2}
$$

10. A 2 p coin has a diameter of 26 mm and a 5 p coin has a radius of 0.85 cm . Ben has $2 p$ and $5 p$ coins with a total value of $12 p$.

Calculate the total area of these coins, giving your answer in square centimetres. Give your answer in terms of π.
$12 p$ is $2 \times 5 p+1 \times 2 p$
$26 \mathrm{~mm}=2.6 \mathrm{~cm}$
Area of $5 p$: $\pi \times 0.85^{2}=0.7225 \pi$
Area of $2 \mathrm{p}: \pi \times 1.3^{2}=1.69 \pi$
Total area of $12 p=0.7225 \pi+0.7225 \pi+1.69 \pi=3.135 \pi \mathrm{~cm}^{2}$

Area of a Parallelogram

Calculate the area of each parallelogram, giving your answers in square centimetres.

Question	Base	Vertical Height	Length of Sloping Sides	Area
1.	6 cm	3 cm	4 cm	
2.	5 cm	4.5 cm	4.8 cm	
3.	65 mm	7 cm	8 cm	

Calculate the missing measurement for each parallelogram.

Question	Area	Base	Vertical Height
4.	$35 \mathrm{~cm}^{2}$	10 cm	
5.	$12 \mathrm{~m}^{2}$	$-\quad \mathrm{m}$	
6.	$94.5 \mathrm{~cm}^{2}$	0.045 m	4.8 m

7. A rhombus has a perimeter of 22 cm and an area of $24.75 \mathrm{~cm}^{2}$. Calculate its vertical height.
8. A wall in the shape of a rhombus has a perimeter of 25 m and a vertical height of four metres. Calculate its area.
9. Six rhombuses are tessellated to make a mat in the shape of a parallelogram. There are three rhombuses in each row and the longest side is the base of the mat. The base of the mat is six metres in length and the area of each rhombus is three square metres. Calculate the vertical height of the mat.
10. The area of a parallelogram is $32 \mathrm{~cm}^{2}$. Its vertical height is double the length of its base. Calculate its vertical height.

Area of a Parallelogram Answers

Calculate the area of each parallelogram, giving your answers in square centimetres.

Question	Base	Vertical Height	Length of Sloping Sides	Area
1.	6 cm	3 cm	4 cm	$6 \times 3=18 \mathrm{~cm}^{2}$
2.	5 cm	4.5 cm	4.8 cm	$5 \times 4.5=22.5 \mathrm{~cm}^{2}$
3.	65 mm	7 cm	8 cm	$6.5 \times 7=45.5 \mathrm{~cm}^{2}$

Calculate the missing measurement for each parallelogram.

Question	Area	Base	Vertical Height
4.	$35 \mathrm{~cm}^{2}$	10 cm	$35 \div 10=3.5 \mathrm{~cm}$
5.	$12 \mathrm{~m}^{2}$	$12 \div 4.8=2.5 \mathrm{~m}$	4.8 m
6.	$94.5 \mathrm{~cm}^{2}$	0.045 m	$94.5 \div 4.5=21 \mathrm{~cm}$

7. A rhombus has a perimeter of 22 cm and an area of $24.75 \mathrm{~cm}^{2}$. Calculate its vertical height.
$22 \div 4=5.5 \mathrm{~cm}$
$24.75 \div 5.5=4.5 \mathrm{~cm}$
8. A wall in the shape of a rhombus has a perimeter of 25 m and a vertical height of four metres. Calculate its area.
$25 \div 4=6.25 \mathrm{~m}$
$6.25 \times 4=25 \mathrm{~m}^{2}$
9. Six rhombuses are tessellated to make a mat in the shape of a parallelogram. There are three rhombuses in each row and the longest side is the base of the mat. The base of the mat is six metres in length and the area of each rhombus is three square metres. Calculate the vertical height of the mat.
$6 \div 3=2 \mathrm{~m}$ base length of each rhombus.
$3 \div 2=1.5 \mathrm{~m}$ vertical height for each rhombus.
If three rhombuses are in a row, then the mat must have a height of two rhombuses.
The vertical height of the mat is $1.5 \times 2=3 \mathrm{~m}$
10. The area of a parallelogram is $32 \mathrm{~cm}^{2}$. Its vertical height is double the length of its base.

Calculate its vertical height.
Let \boldsymbol{b} represent the length of the base (in centimetres).
$b \times 2 b=32 \mathrm{~cm}^{2}$
$2 b^{2}=32 \mathrm{~cm}^{2}$
$b^{2}=16 \mathrm{~cm}$
b $=4 \mathrm{~cm}$
Regent Studies | www.regentstudies.com
base $=4 \mathrm{~cm}$, vertical height $=8 \mathrm{~cm}$

Area of a Parallelogram

Calculate the area of each parallelogram, giving your answers in square centimetres.

Question	Base	Vertical Height	Length of Sloping Sides	Area
1.	6 cm	3 cm	4 cm	
2.	5 cm	4.5 cm	4.8 cm	
3.	65 mm	7 cm	8 cm	

Calculate the missing measurement for each parallelogram.

Question	Area	Base	Vertical Height
4.	$35 \mathrm{~cm}^{2}$	10 cm	
5.	$12 \mathrm{~m}^{2}$	$-\quad \mathrm{m}$	
6.	$94.5 \mathrm{~cm}^{2}$	0.045 m	4.8 m

7. A rhombus has a perimeter of 22 cm and an area of $24.75 \mathrm{~cm}^{2}$. Calculate its vertical height.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. A wall in the shape of a rhombus has a perimeter of 25 m and a vertical height of four metres. Calculate its area.
\qquad
\qquad
\qquad
\qquad
\qquad
9. Six rhombuses are tessellated to make a mat in the shape of a parallelogram. There are three rhombuses in each row and the longest side is the base of the mat. The base of the mat is six metres in length and the area of each rhombus is three square metres. Calculate the vertical height of the mat.
\qquad
\qquad
\qquad
\qquad
\qquad
10. The area of a parallelogram is $32 \mathrm{~cm}^{2}$. Its vertical height is double the length of its base.

Calculate its vertical height.
\qquad

Area of a Parallelogram Answers

Calculate the area of each parallelogram, giving your answers in square centimetres.

Question	Base	Vertical Height	Length of Sloping Sides	Area
1.	6 cm	3 cm	4 cm	$6 \times 3=18 \mathrm{~cm}^{2}$
2.	5 cm	4.5 cm	4.8 cm	$5 \times 4.5=22.5 \mathrm{~cm}^{2}$
3.	65 mm	7 cm	8 cm	$6.5 \times 7=45.5 \mathrm{~cm}^{2}$

Calculate the missing measurement for each parallelogram.

Question	Area	Base	Vertical Height
4.	$35 \mathrm{~cm}^{2}$	10 cm	$35 \div 10=3.5 \mathrm{~cm}$
5.	$12 \mathrm{~m}^{2}$	$12 \div 4.8=2.5 \mathrm{~m}$	4.8 m
6.	$94.5 \mathrm{~cm}^{2}$	0.045 m	$94.5 \div 4.5=21 \mathrm{~cm}$

7. A rhombus has a perimeter of 22 cm and an area of $24.75 \mathrm{~cm}^{2}$. Calculate its vertical height.
$22 \div 4=5.5 \mathrm{~cm}$
$24.75 \div 5.5=4.5 \mathrm{~cm}$
8. A wall in the shape of a rhombus has a perimeter of 25 m and a vertical height of four metres. Calculate its area.
$25 \div 4=6.25 \mathrm{~m}$
$6.25 \times 4=25 \mathrm{~m}^{2}$
9. Six rhombuses are tessellated to make a mat in the shape of a parallelogram. There are three rhombuses in each row and the longest side is the base of the mat. The base of the mat is six metres in length and the area of each rhombus is three square metres. Calculate the vertical height of the mat.
$6 \div 3=2 \mathrm{~m}$ base length of each rhombus.
$3 \div 2=1.5 \mathrm{~m}$ vertical height for each rhombus.
If three rhombuses are in a row, then the mat must have a height of two rhombuses.
The vertical height of the mat is $1.5 \times 2=3 \mathrm{~m}$
10. The area of a parallelogram is $32 \mathrm{~cm}^{2}$. Its vertical height is double the length of its base.

Calculate its vertical height.
Let \boldsymbol{b} represent the length of the base (in centimetres).
$b \times 2 b=32 \mathrm{~cm}^{2}$
$2 b^{2}=32 \mathrm{~cm}^{2}$
$b^{2}=16 \mathrm{~cm}$
$b=4 \mathrm{~cm}$
base $=4 \mathrm{~cm}$, vertical height $=8 \mathrm{~cm}$

Area of a Rectangle

Calculate the area of each rectangle. Give each answer in square centimetres.

Question	Length	Width	Area
1.	5 cm	6 cm	
2.	4 cm	4.5 cm	
3.	35 mm	3 cm	

Calculate the missing side of each rectangle.

Question	Area	Length	Width
4.	$28 \mathrm{~cm}^{2}$	4 cm	
5.	$5 \mathrm{~m}^{2}$	m	2.5 m
6.	$32.2 \mathrm{~cm}^{2}$	0.092 m	

7. A rectangular football pitch is 95 metres long and 60 metres wide. Calculate its area, stating the units to your answer.
8. The surface of a pool table has a width of one and a half metres and a length two and a half times the value of the width. Calculate the area of the surface of the pool table.
9. A square has an area of $144 \mathrm{~cm}^{2}$. Calculate its perimeter.
10. A rectangular lawn has a length of five metres and a width of three metres. A square flower bed, with a length of two metres is to be dug in the centre. What area of lawn will be left?

Area of a Rectangle Answers

Calculate the area of each rectangle. Give each answer in square centimetres.

Question	Length	Width	Area
1.	5 cm	6 cm	$5 \times 6=30 \mathrm{~cm}^{2}$
2.	4 cm	4.5 cm	$4 \times 4.5=18 \mathrm{~cm}^{2}$
3.	35 mm	3 cm	$3.5 \times 3=10.5 \mathrm{~cm}^{2}$

Calculate the missing side of each rectangle.

Question	Area	Length	Width
4.	$28 \mathrm{~cm}^{2}$	4 cm	$28 \div 4=7 \mathrm{~cm}$
5.	$5 \mathrm{~m}^{2}$	$5 \div 2.5=2 \mathrm{~m}$	2.5 m
6.	$32.2 \mathrm{~cm}^{2}$	0.092 m	$32.2 \div 9.2=3.5 \mathrm{~cm}$

7. A rectangular football pitch is 95 metres long and 60 metres wide. Calculate its area, stating the units to your answer.
$95 \times 60=5700 \mathrm{~m}^{2}$
8. The surface of a pool table has a width of one and a half metres and a length two and a half times the value of the width. Calculate the area of the surface of the pool table.
$1.5 \times 2.5=3.75 \mathrm{~m}$
$1.5 \times 3.75=5.625 \mathrm{~m}^{2}$
9. A square has an area of $144 \mathrm{~cm}^{2}$. Calculate its perimeter.
$\sqrt{144}=12 \mathrm{~cm}$
$12 \times 4=48 \mathrm{~cm}$
10. A rectangular lawn has a length of five metres and a width of three metres. A square flower bed, with a length of two metres is to be dug in the centre. What area of lawn will be left?
Area of the lawn: $5 \times 3=15 \mathrm{~m}^{2}$
Area of the flower bed: $2 \times 2=4 \mathrm{~m}^{2}$
$15-4=11 \mathrm{~m}^{2}$

Area of a Rectangle

Calculate the area of each rectangle. Give each answer in square centimetres.

Question	Length	Width	Area
1.	5 cm	6 cm	
2.	4 cm	4.5 cm	
3.	35 mm	3 cm	

Calculate the missing side of each rectangle.

Question	Area	Length	Width
4.	$28 \mathrm{~cm}^{2}$	4 cm	
5.	$5 \mathrm{~m}^{2}$	m	2.5 m
6.	$32.2 \mathrm{~cm}^{2}$	0.092 m	

7. A rectangular football pitch is 95 metres long and 60 metres wide. Calculate its area, stating the units to your answer.
\qquad
\qquad
8. The surface of a pool table has a width of one and a half metres and a length two and a half times the value of the width. Calculate the area of the surface of the pool table.
\qquad
\qquad
9. A square has an area of $144 \mathrm{~cm}^{2}$. Calculate its perimeter.
\qquad
\qquad
10. A rectangular lawn has a length of five metres and a width of three metres. A square flower bed, with a length of two metres is to be dug in the centre. What area of lawn will be left?
\qquad
\qquad
\qquad
\qquad

Area of a Rectangle Answers

Calculate the area of each rectangle. Give each answer in square centimetres.

Question	Length	Width	Area
1.	5 cm	6 cm	$5 \times 6=30 \mathrm{~cm}^{2}$
2.	4 cm	4.5 cm	$4 \times 4.5=18 \mathrm{~cm}^{2}$
3.	35 mm	3 cm	$3.5 \times 3=10.5 \mathrm{~cm}^{2}$

Calculate the missing side of each rectangle.

Question	Area	Length	Width
4.	$28 \mathrm{~cm}^{2}$	4 cm	$28 \div 4=7 \mathrm{~cm}$
5.	$5 \mathrm{~m}^{2}$	$5 \div 2.5=2 \mathrm{~m}$	2.5 m
6.	$32.2 \mathrm{~cm}^{2}$	0.092 m	$32.2 \div 9.2=3.5 \mathrm{~cm}$

7. A rectangular football pitch is 95 metres long and 60 metres wide. Calculate its area, stating the units to your answer.
$95 \times 60=5700 \mathrm{~m}^{2}$
8. The surface of a pool table has a width of one and a half metres and a length two and a half times the value of the width. Calculate the area of the surface of the pool table.
$1.5 \times 2.5=3.75 \mathrm{~m}$
$1.5 \times 3.75=5.625 \mathrm{~m}^{2}$
9. A square has an area of $144 \mathrm{~cm}^{2}$. Calculate its perimeter.
$\sqrt{144}=12 \mathrm{~cm}$
$12 \times 4=48 \mathrm{~cm}$
10. A rectangular lawn has a length of five metres and a width of three metres. A square flower bed, with a length of two metres is to be dug in the centre. What area of lawn will be left?
Area of the lawn: $5 \times 3=15 \mathrm{~m}^{2}$
Area of the flower bed: $2 \times 2=4 \mathrm{~m}^{2}$
$15-4=11 \mathrm{~m}^{2}$

Area of a Trapezium

Calculate the area of each trapezium, giving your answers in square centimetres.

Question	Length (a)	Length (b)	Vertical Height (h)	Area
1.	4 cm	6 cm	3 cm	
2.	2.5 cm	5 cm	6.5 cm	
3.	34 mm	4.5 cm	7.25 cm	

Calculate the missing measurement for each trapezium.

Question	Area	Length (a)	Length (b)	Vertical Height
4.	$15.75 \mathrm{~cm}^{2}$	3 cm	4 cm	
5.	$74.42 \mathrm{~m}^{2}$		m	8 m
6.	$154.5 \mathrm{~cm}^{2}$	8.1 cm		12.2 m

7. Calculate the area of the shape.

8. Two congruent trapezia are placed together to make a different shape. Calculate the area of the new shape.

9. Calculate the perimeter of the shape in question eight.
10. Tymon wants to paint a feature wall in his office in a deluxe red paint. The paint he wants is available in five-litre tins, each of which cover six square metres in a single coat. The paint costs $£ 6.95$ per tin. The wall will need two coats of paint. Calculate the total cost to paint the wall and how many tins Tymon should purchase.

Area of a Trapezium Answers

Calculate the area of each trapezium, giving your answers in square centimetres.

Question	Length (a)	Length (b)	Vertical Height (h)	Area
1.	4 cm	6 cm	3 cm	$0.5 \times(4+6) \times 3=15 \mathrm{~cm}^{2}$
2.	2.5 cm	5 cm	6.5 cm	$0.5 \times(2.5+5) \times 6.5=24.375 \mathrm{~cm}^{2}$
3.	34 mm	4.5 cm	7.25 cm	$0.5 \times(3.4+4.5) \times 7.25=28.64 \mathrm{~cm}^{2}(2 \mathrm{~d}$. p. $)$

Calculate the missing measurement for each trapezium.

Question	Area	Length (a)	Length (b)	Vertical Height
4.	$15.75 \mathrm{~cm}^{2}$	3 cm	4 cm	4.5 cm
5.	$74.42 \mathrm{~m}^{2}$	4.2 m	8 m	12.2 m
6.	$154.5 \mathrm{~cm}^{2}$	8.1 cm	12.5 cm	150 mm

7. Calculate the area of the shape.

$0.5 \times(4.5+6.4) \times 4.1=22.345 \mathrm{~cm}^{2}$
8. Two congruent trapezia are placed together to make a different shape. Calculate the area of the new shape.

$0.5 \times(5.5+6) \times 8.5=48.875 \mathrm{~m}^{2}$
$48.875 \times 2=97.75 \mathrm{~m}^{2}$
(Alternatively, consider the area of the parallelogram as $(6+5.5) \times 8.5)$
9. Calculate the perimeter of the shape in question eight.
$2 \times 6+2 \times 5.5+2 \times 8.7=40.4 m$
10. Tymon wants to paint a feature wall in his office in a deluxe red paint. The paint he wants is available in five-litre tins, each of which cover six square metres in a single coat. The paint costs $£ 6.95$ per tin. The wall will need two coats of paint. Calculate the total cost to paint the wall and how many tins Tymon should purchase.

Area of the wall: $0.5 \times(3.5+5) \times 9.5=40.375 \mathrm{~m}^{2}$
Two coats of paint: $40.375 \times 2=80.75 \mathrm{~m}^{2}$
$80.75 \div 6=13.46$ (2d.p.)
He should buy 14 tins.
$14 \times £ 6.95=£ 97.30$

Area of a Trapezium

Calculate the area of each trapezium, giving your answers in square centimetres.

Question	Length (a)	Length (b)	Vertical Height (h)	Area
1.	4 cm	6 cm	3 cm	
2.	2.5 cm	5 cm	6.5 cm	
3.	34 mm	4.5 cm	7.25 cm	

Calculate the missing measurement for each trapezium.

Question	Area	Length (a)	Length (b)	Vertical Height
4.	$15.75 \mathrm{~cm}^{2}$	3 cm	4 cm	
5.	$74.42 \mathrm{~m}^{2}$		8 m	
6.	$154.5 \mathrm{~cm}^{2}$	8.1 cm		12.2 m

7. Calculate the area of the shape.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. Two congruent trapezia are placed together to make a different shape. Calculate the area of the new shape.

\qquad
\qquad
\qquad
\qquad
\qquad
9. Calculate the perimeter of the shape in question eight.
\qquad
10. Tymon wants to paint a feature wall in his office in a deluxe red paint. The paint he wants is available in five-litre tins, each of which cover six square metres in a single coat. The paint costs $£ 6.95$ per tin. The wall will need two coats of paint. Calculate the total cost to paint the wall and how many tins Tymon should purchase.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Area of a Trapezium Answers

Calculate the area of each trapezium, giving your answers in square centimetres.

Question	Length (a)	Length (b)	Vertical Height (h)	Area
1.	4 cm	6 cm	3 cm	$0.5 \times(4+6) \times 3=15 \mathrm{~cm}^{2}$
2.	2.5 cm	5 cm	6.5 cm	$0.5 \times(2.5+5) \times 6.5=24.375 \mathrm{~cm}^{2}$
3.	34 mm	4.5 cm	7.25 cm	$0.5 \times(3.4+4.5) \times 7.25=28.64 \mathrm{~cm}^{2}(2 \mathrm{~d}$. p. $)$

Calculate the missing measurement for each trapezium.

Question	Area	Length (a)	Length (b)	Vertical Height
4.	$15.75 \mathrm{~cm}^{2}$	3 cm	4 cm	4.5 cm
5.	$74.42 \mathrm{~m}^{2}$	4.2 m	8 m	12.2 m
6.	$154.5 \mathrm{~cm}^{2}$	8.1 cm	12.5 cm	150 mm

7. Calculate the area of the shape.

$0.5 \times(4.5+6.4) \times 4.1=22.345 \mathrm{~cm}^{2}$
8. Two congruent trapezia are placed together to make a different shape. Calculate the area of the new shape.

$0.5 \times(5.5+6) \times 8.5=48.875 \mathrm{~m}^{2}$
$48.875 \times 2=97.75 \mathrm{~m}^{2}$
(Alternatively, consider the area of the parallelogram as $(6+5.5) \times 8.5)$
9. Calculate the perimeter of the shape in question eight.
$2 \times 6+2 \times 5.5+2 \times 8.7=40.4 m$
10. Tymon wants to paint a feature wall in his office in a deluxe red paint. The paint he wants is available in five-litre tins, each of which cover six square metres in a single coat. The paint costs $£ 6.95$ per tin. The wall will need two coats of paint. Calculate the total cost to paint the wall and how many tins Tymon should purchase.

Area of the wall: $0.5 \times(3.5+5) \times 9.5=40.375 \mathrm{~m}^{2}$
Two coats of paint: $40.375 \times 2=80.75 \mathrm{~m}^{2}$
$80.75 \div 6=13.46$ (2d.p.)
He should buy 14 tins.
$14 \times £ 6.95=£ 97.30$

Area of a Triangle

Calculate the area of each triangle, giving your answers in square centimetres.

Question	Base	Vertical Height	Area
1.	3 cm	7 cm	
2.	2 cm	3.5 cm	
3.	42 mm	5 cm	

Calculate the missing measurement for each triangle.

Question	Area	Base	Vertical Height
4.	$30 \mathrm{~cm}^{2}$	6 cm	
5.	$6.6 \mathrm{~m}^{2}$	m	
6.	$12.2 \mathrm{~cm}^{2}$	0.055 m	2.2 m

7. A right-angled triangle has a base four centimetres in length, a hypotenuse five centimetres in length and its third side is three centimetres long. Calculate the area of the triangle.
8. An isosceles triangle has a base 10 cm in length. Its two other sides are 13 cm long and its vertical height is 12 cm . Calculate its area.
9. The perimeter of a square is 36 cm . It is split along its diagonal into two congruent triangles. Calculate the area of one of the triangles.
10. An isosceles triangle is formed by placing two congruent right-angled triangles adjacent to each other. Each of these triangles has a base of 70 mm and a vertical height of 8 cm . Calculate the area of the isosceles triangle, giving your answer in square centimetres.

Area of a Triangle Answers

Calculate the area of each triangle, giving your answers in square centimetres.

Question	Base	Vertical Height	Area
1.	3 cm	7 cm	$0.5 \times 3 \times 7=10.5 \mathrm{~cm}^{2}$
2.	2 cm	3.5 cm	$0.5 \times 2 \times 3.5=3.5 \mathrm{~cm}^{2}$
3.	42 mm	5 cm	$0.5 \times 4.2 \times 5=10.5 \mathrm{~cm}^{2}$

Calculate the missing measurement for each triangle.

Question	Area	Base	Vertical Height
4.	$30 \mathrm{~cm}^{2}$	6 cm	$30 \div(6 \times 0.5)=10 \mathrm{~cm}$
5.	$6.6 \mathrm{~m}^{2}$	$6.6 \div(2.2 \times 0.5)=6 \mathrm{~m}$	2.2 m
6.	$12.2 \mathrm{~cm}^{2}$	0.055 m	$12.2 \div(5.5 \times 0.5)=4.44 \mathrm{~cm}(2 \mathrm{~d}$. p. $)$

7. A right-angled triangle has a base four centimetres in length, a hypotenuse five centimetres in length and its third side is three centimetres long. Calculate the area of the triangle.
$0.5 \times 3 \times 4=6 \mathrm{~cm}^{2}$
8. An isosceles triangle has a base 10 cm in length. Its two other sides are 13 cm long and its vertical height is 12 cm . Calculate its area.
$0.5 \times 10 \times 12=60 \mathrm{~cm}^{2}$
9. The perimeter of a square is 36 cm . It is split along its diagonal into two congruent triangles. Calculate the area of one of the triangles.
$36 \div 4=9 \mathrm{~cm}$
$0.5 \times 9 \times 9=40.5 \mathrm{~cm}^{2}$
10. An isosceles triangle is formed by placing two congruent right-angled triangles adjacent to each other. Each of these triangles has a base of 70 mm and a vertical height of 8 cm .
Calculate the area of the isosceles triangle, giving your answer in square centimetres.
$0.5 \times 14 \times 8=56 \mathrm{~cm}^{2}$

Area of a Triangle

Calculate the area of each triangle, giving your answers in square centimetres.

Question	Base	Vertical Height	Area
1.	3 cm	7 cm	
2.	2 cm	3.5 cm	
3.	42 mm	5 cm	

Calculate the missing measurement for each triangle.

Question	Area	Base	Vertical Height
4.	$30 \mathrm{~cm}^{2}$	6 cm	
5.	$6.6 \mathrm{~m}^{2}$	$-\quad \mathrm{m}$	2.2 m
6.	$12.2 \mathrm{~cm}^{2}$	0.055 m	

7. A right-angled triangle has a base four centimetres in length, a hypotenuse five centimetres in length and its third side is three centimetres long. Calculate the area of the triangle.
\qquad
\qquad
8. An isosceles triangle has a base 10 cm in length. Its two other sides are 13 cm long and its vertical height is 12 cm . Calculate its area.
\qquad
\qquad
9. The perimeter of a square is 36 cm . It is split along its diagonal into two congruent triangles.

Calculate the area of one of the triangles.
\qquad
\qquad
\qquad
\qquad
10. An isosceles triangle is formed by placing two congruent right-angled triangles adjacent to each other. Each of these triangles has a base of 70 mm and a vertical height of 8 cm . Calculate the area of the isosceles triangle, giving your answer in square centimetres.
\qquad
\qquad
\qquad
\qquad

Area of a Triangle Answers

Calculate the area of each triangle, giving your answers in square centimetres.

Question	Base	Vertical Height	Area
1.	3 cm	7 cm	$0.5 \times 3 \times 7=10.5 \mathrm{~cm}^{2}$
2.	2 cm	3.5 cm	$0.5 \times 2 \times 3.5=3.5 \mathrm{~cm}^{2}$
3.	42 mm	5 cm	$0.5 \times 4.2 \times 5=10.5 \mathrm{~cm}^{2}$

Calculate the missing measurement for each triangle.

Question	Area	Base	Vertical Height
4.	$30 \mathrm{~cm}^{2}$	6 cm	$30 \div(6 \times 0.5)=10 \mathrm{~cm}$
5.	$6.6 \mathrm{~m}^{2}$	$6.6 \div(2.2 \times 0.5)=6 \mathrm{~m}$	2.2 m
6.	$12.2 \mathrm{~cm}^{2}$	0.055 m	$12.2 \div(5.5 \times 0.5)=4.44 \mathrm{~cm}(2 \mathrm{~d}$. p. $)$

7. A right-angled triangle has a base four centimetres in length, a hypotenuse five centimetres in length and its third side is three centimetres long. Calculate the area of the triangle.
$0.5 \times 3 \times 4=6 \mathrm{~cm}^{2}$
8. An isosceles triangle has a base 10 cm in length. Its two other sides are 13 cm long and its vertical height is 12 cm . Calculate its area.
$0.5 \times 10 \times 12=60 \mathrm{~cm}^{2}$
9. The perimeter of a square is 36 cm . It is split along its diagonal into two congruent triangles. Calculate the area of one of the triangles.
$36 \div 4=9 \mathrm{~cm}$
$0.5 \times 9 \times 9=40.5 \mathrm{~cm}^{2}$
10. An isosceles triangle is formed by placing two congruent right-angled triangles adjacent to each other. Each of these triangles has a base of 70 mm and a vertical height of 8 cm .
Calculate the area of the isosceles triangle, giving your answer in square centimetres.
$0.5 \times 14 \times 8=56 \mathrm{~cm}^{2}$

Circumference of a Circle

In questions one to five, the circumference of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to two decimal places.
1.

2.

3.

4.

5.

Calculate the perimeter of each shape in questions six to eight, rounding your answers to one decimal place.
6.

7.

8.

9. A trundle wheel is a device used to measure distance. Each revolution of the wheel measures a distance of 1 m . Calculate the diameter of the wheel, giving your answer in centimetres correct to 2 decimal places.
10. The diagram shows a pond with a circular border filled with soil. Linda wants to plant tulip bulbs along the circumference of the pond with a minimum distance of 240 mm between each one. She says she can plant 7 bulbs. Prove that she is correct.

Circumference of a Circle Answers

In questions one to five, the circumference of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to two decimal places.
1.

$$
\text { Radius }=\frac{31.2}{2 \pi}=4.97 \mathrm{~cm}
$$

2.

 Diameter $=\frac{175}{\pi}=55.70 \mathrm{~cm}$
3.

Diameter $=\frac{376.2}{\pi}=119.75 \mathrm{~cm}$
4.

Radius $=\frac{0.44}{2 \pi}=0.07 \mathrm{~m}$ or 7 cm
5.

Diameter $=\frac{89.9}{\pi}=28.62 \mathrm{~m}$

Calculate the perimeter of each shape in questions six to eight, rounding your answers to one decimal place.
6.

$$
\frac{2 \pi \times 4.25}{2}+(2 \times 4.25)=21.9 \mathrm{~cm}
$$

7.

3.5 cm

$$
\frac{2 \pi \times 3.5}{4}+(2 \times 3.5)=12.5 \mathrm{~cm}
$$

8.

$$
\frac{3}{4} \times(2 \pi \times 0.25)+(2 \times 0.25)=1.7 \mathrm{~m}
$$

9. A trundle wheel is a device used to measure distance. Each revolution of the wheel measures a distance of 1 m . Calculate the diameter of the wheel, giving your answer in centimetres correct to 2 decimal places.
$1 \mathrm{~m}=100 \mathrm{~cm}$
diameter $=\frac{100}{\pi}=31.83 \mathrm{~cm}$
10. The diagram shows a pond with a circular border filled with soil. Linda wants to plant tulip bulbs along the circumference of the pond with a minimum distance of 240 mm between each one. She says she can plant 7 bulbs. Prove that she is correct.

Diameter of pond $=(40-10) \times 2=60 \mathrm{~cm}$
Circumference $=60 \times \pi=188.495$...cm
$240 \mathrm{~mm}=24 \mathrm{~cm}$
Number of spaces for bulbs $=\frac{188.495 \ldots}{24}=7.853 \ldots$
Yes, she can plant 7 bulbs.

Circumference of a Circle

In questions one to five, the circumference of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to two decimal places.
1.

2.

3.

\qquad
\qquad
\qquad
\qquad
4.

5.

Calculate the perimeter of each shape in questions six to eight, rounding your answers to one decimal place.
6.

\qquad
\qquad
7.

\qquad
\qquad
8.

9. A trundle wheel is a device used to measure distance. Each revolution of the wheel measures a distance of 1 m . Calculate the diameter of the wheel, giving your answer in centimetres correct to 2 decimal places.
\qquad
\qquad
\qquad
\qquad
10. The diagram shows a pond with a circular border filled with soil. Linda wants to plant tulip bulbs along the circumference of the pond with a minimum distance of 240 mm between each one. She says she can plant 7 bulbs. Prove that she is correct.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Circumference of a Circle Answers

In questions one to five, the circumference of each circle is given. Calculate the length of the diameter or radius as shown in each circle, rounding your answers to two decimal places.
1.

$$
\text { Radius }=\frac{31.2}{2 \pi}=4.97 \mathrm{~cm}
$$

2.

 Diameter $=\frac{175}{\pi}=55.70 \mathrm{~cm}$
3.

Diameter $=\frac{376.2}{\pi}=119.75 \mathrm{~cm}$
4.

$$
\text { Radius }=\frac{0.44}{2 \pi}=0.07 \mathrm{~m} \text { or } 7 \mathrm{~cm}
$$

5.

Diameter $=\frac{89.9}{\pi}=28.62 \mathrm{~m}$

Calculate the perimeter of each shape in questions six to eight, rounding your answers to one decimal place.
6.

$$
\frac{2 \pi \times 4.25}{2}+(2 \times 4.25)=21.9 \mathrm{~cm}
$$

7.

3.5 cm

$$
\frac{2 \pi \times 3.5}{4}+(2 \times 3.5)=12.5 \mathrm{~cm}
$$

8.

$$
\frac{3}{4} \times(2 \pi \times 0.25)+(2 \times 0.25)=1.7 \mathrm{~m}
$$

9. A trundle wheel is a device used to measure distance. Each revolution of the wheel measures a distance of 1 m . Calculate the diameter of the wheel, giving your answer in centimetres correct to 2 decimal places.
$1 \mathrm{~m}=100 \mathrm{~cm}$
diameter $=\frac{100}{\pi}=31.83 \mathrm{~cm}$
10. The diagram shows a pond with a circular border filled with soil. Linda wants to plant tulip bulbs along the circumference of the pond with a minimum distance of 240 mm between each one. She says she can plant 7 bulbs. Prove that she is correct.

Diameter of pond $=(40-10) \times 2=60 \mathrm{~cm}$
Circumference $=60 \times \pi=188.495$...cm
$240 \mathrm{~mm}=24 \mathrm{~cm}$
Number of spaces for bulbs $=\frac{188.495 \ldots}{24}=7.853 \ldots$
Yes, she can plant 7 bulbs.

Compound Shapes

1. The diagram shows a compound shape made up of a rectangle and square.
Calculate its area.

2. The diagram shows a compound shape made up of a rectangle and square. The area of the square is $16 \mathrm{~cm}^{2}$. Calculate the area of the compound shape.

3. The diagram shows a compound shape made up of a rectangle and square. The area of the compound shape is $22.5 \mathrm{~cm}^{2}$. Calculate the value of the length l.

4. The diagram shows a compound shape made up of a rectangle and triangle Calculate the area of the compound shape.

5. A square hole is cut out of a grass lawn in order to plant vegetable seeds. Calculate the area of the lawn that is left over.

Regent Studies | www.regentstudies.com

Compound Shapes Answers

1. The diagram shows a compound shape made up of a rectangle and square. Calculate its area.

$$
(4 \times 5)+(5 \times 5)=45 \mathrm{~cm}^{2}
$$

2. The diagram shows a compound shape made up of a rectangle and square. The area of the square is $16 \mathrm{~cm}^{2}$. Calculate the area of the compound shape.

$$
\begin{aligned}
& \sqrt{16}=4 \mathrm{~cm} \\
& (8 \times 4)+16=48 \mathrm{~cm}^{2}
\end{aligned}
$$

3. The diagram shows a compound shape made up of a rectangle and square. The area of the compound shape is $22.5 \mathrm{~cm}^{2}$. Calculate the value of the length l.

$$
\begin{aligned}
& 22.5-3^{2}=13.5 \mathrm{~cm}^{2} \\
& 13.5 \div 3=4.5 \mathrm{~cm}
\end{aligned}
$$

4. The diagram shows a compound shape made up of a rectangle and triangle Calculate the area of the compound shape.

$$
\begin{aligned}
& 2.5 \times 3=7.5 \mathrm{~m}^{2} \\
& 4-2.5=1.5 \mathrm{~m} \\
& 0.5 \times 3 \times 1.5=2.25 \mathrm{~m}^{2} \\
& 7.5+2.25=9.75 \mathrm{~m}^{2}
\end{aligned}
$$

5. A square hole is cut out of a grass lawn in order to plant vegetable seeds. Calculate the area of the lawn that is left over.

$$
\begin{aligned}
& 3 \times 1.5=4.5 \mathrm{~m}^{2} \\
& 1.25^{2}=1.5625 \mathrm{~m}^{2} \\
& 4.5-1.5625=2.94 \mathrm{~m}^{2}(2 \text { d.p. })
\end{aligned}
$$

6. The front view of a shed is shown. The rectangular cross-section, including the door, has a total area of $3.6 \mathrm{~m}^{2}$. Calculate the vertical height of the triangular roof.

$$
\begin{aligned}
& 3.6 \div 3=1.2 m \\
& 3.1-1.2=1.9 m
\end{aligned}
$$

7. Calculate the area of the cross-section of the triangular roof in question 6 .
$0.5 \times 1.9 \times 3=2.85 \mathrm{~m}$
8. A regular hexagon with an area of $32 \mathrm{~cm}^{2}$ is tessellated to form a pattern. How many hexagons are in the pattern if the total area is $480 \mathrm{~cm}^{2}$?

$$
480 \div 32=15 \text { hexagons }
$$

9. A shape is made up of two congruent triangles inscribed in a rectangle. The shape has a total area of $15 \mathrm{~cm}^{2}$ and a horizontal length of 5 cm . Calculate the total area of the two triangles.

Height of the shape: $15 \div 5=3 \mathrm{~cm}$
Height of one triangle: $3 \div 2=1.5 \mathrm{~cm}$
Area of one triangle: $0.5 \times 5 \times 1.5=3.75 \mathrm{~cm}^{2}$
Area of both triangles: $2 \times 3.75=7.5 \mathrm{~cm}^{2}$
10. Sammi sketches a rocket out of polygons. The vertical height of the rocket is 10 cm and at its widest it is 8 cm in length. Calculate the area of the rocket.

Height of the trapezium is $10-(2+3)=5 \mathrm{~cm}$
The width of the triangle is 8 cm .
Area of the trapezium: $0.5 \times(5+4) \times 5=22.5 \mathrm{~cm}^{2}$
Area of the rectangle: $3 \times 4=12 \mathrm{~cm}^{2}$
Area of the triangle: $0.5 \times 8 \times 2=8 \mathrm{~cm}^{2}$
Total area: $22.5+12+8=42.5 \mathrm{~cm}^{2}$

Compound Shapes with Circles

1. Calculate the area of the compound shape, rounding your answer to one decimal place.

2. Calculate the area of the compound shape, rounding your answer to one decimal place.

3. Calculate the shaded area, rounding your answer to one decimal place.

4. Calculate the area of the shaded sections, rounding your answer to one decimal place.

5. Calculate the area of the compound shape, rounding your answer to one decimal place.

6. Calculate the area of the compound shape, rounding your answer to one decimal place.

7. Calculate the area of the shaded sections, rounding your answer to one decimal place.

8. Calculate the area of the shaded sections, rounding your answer to one decimal place.
3.5m

9. Four concentric circles are redrawn as individual circles. The smallest circle has a diameter of 6 cm in length. The radius of each circle increases by one centimetre for each circle. Calculate the total area of the four individual circles, leaving your answer in terms of pi.
10. Three congruent circular holes are cut out from a rectangular piece of paper. The paper has a length of ten centimetres and a width of seven centimetres. The circles each have a radius of 2 cm and do not overlap. Calculate the area of the remaining shape, leaving your answer in terms of pi.

Compound Shapes with Circles Answers

1. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
3^{2}+\left(0.5 \pi \times 1.5^{2}\right)=12.5 \mathrm{~cm}^{2}
$$

2. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
0.75 \pi \times 2^{2}=9.4 \mathrm{~cm}^{2}
$$

3. Calculate the shaded area, rounding your answer to one decimal place.

$$
(6 \times 5)-\left(\pi \times 2.5^{2}\right)=10.4 \mathrm{~cm}^{2}
$$

4. Calculate the area of the shaded sections, rounding your answer to one decimal place.

$$
5.5^{2}-\left(\pi \times 2.75^{2}\right)=6.5 \mathrm{~cm}^{2}
$$

5. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
(6 \times 4)+\pi \times 2^{2}=36.6 \mathrm{~cm}^{2}
$$

6. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
\begin{aligned}
& 0.5 \times(2+4) \times 3=9 \mathrm{~m}^{2} \\
& 7.5-(3+1)=3.5 \mathrm{~m} \\
& 3.5 \times 2=7 \mathrm{~m}^{2} \\
& \frac{\pi \times 1^{2}}{2}=1.57 \ldots \mathrm{~m}^{2} \\
& 9+7+1.57 \ldots=17.6 \mathrm{~m}^{2}
\end{aligned}
$$

7. Calculate the area of the shaded sections, rounding your answer to one decimal place.

Diameter $=6 \mathrm{~m}$
$10-6=4 m$

Height of each triangle is $4 \div 2=2 \mathrm{~m}$
$2(0.5 \times 2 \times 6)+\left(\pi \times 3^{2}\right)=40.3 \mathrm{~m}^{2}$
8. Calculate the area of the shaded sections, rounding your answer to one decimal place.

$3.5-1.2=2.3 m$
Base of each triangle is $2.3 \div 2=1.15 \mathrm{~m}$
Height of each triangle is $2-0.6=1.4 m$
$2(0.5 \times 1.15 \times 1.4)+\left(\pi \times 0.6^{2}\right)=2.7 \mathrm{~cm}^{2}$
9. Four concentric circles are redrawn as individual circles. The smallest circle has a diameter of 6 cm in length. The radius of each circle increases by one centimetre for each circle.
Calculate the total area of the four individual circles, leaving your answer in terms of pi.
The radii of the circles are $3,4,5$ and 6 cm .
$\left(\pi \times 3^{2}\right)+\left(\pi \times 4^{2}\right)+\left(\pi \times 5^{2}\right)+\left(\pi \times 6^{2}\right)=86 \pi \mathrm{~cm}^{2}$
10. Three congruent circular holes are cut out from a rectangular piece of paper. The paper has a length of ten centimetres and a width of seven centimetres. The circles each have a radius of 2 cm and do not overlap. Calculate the area of the remaining shape, leaving your answer in terms of pi.
$10 \times 7=70 \mathrm{~cm}^{2}$
$\pi \times 2^{2}=4 \pi \mathrm{~cm}^{2}$
$4 \pi \times 3=12 \pi \mathrm{~cm}^{2}$
Area $=70-12 \pi \mathrm{~cm}^{2}$

Compound Shapes with Circles

1. Calculate the area of the compound shape, rounding your answer to one decimal place.

2. Calculate the area of the compound shape, rounding your answer to one decimal place.

\qquad
\qquad
\qquad
3. Calculate the shaded area, rounding your answer to one decimal place.

\qquad
\qquad
4. Calculate the area of the shaded sections, rounding your answer to one decimal place.

\qquad
\qquad
\qquad
5. Calculate the area of the compound shape, rounding your answer to one decimal place.

\qquad
\qquad
\qquad
6. Calculate the area of the compound shape, rounding your answer to one decimal place.

7. Calculate the area of the shaded sections, rounding your answer to one decimal place.
\qquad
8. Calculate the area of the shaded sections, rounding your answer to one decimal place.

\qquad
9. Calculate
\qquad
\qquad
10. Four concentric circles are redrawn as individual circles. The smallest circle has a diameter of 6 cm in length. The radius of each circle increases by one centimetre for each circle.
Calculate the total area of the four individual circles, leaving your answer in terms of pi.
\qquad
\qquad
\qquad
\qquad
11. Three congruent circular holes are cut out from a rectangular piece of paper. The paper has a length of ten centimetres and a width of seven centimetres. The circles each have a radius of 2 cm and do not overlap. Calculate the area of the remaining shape, leaving your answer in terms of pi.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compound Shapes with Circles Answers

1. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
3^{2}+\left(0.5 \pi \times 1.5^{2}\right)=12.5 \mathrm{~cm}^{2}
$$

2. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
0.75 \pi \times 2^{2}=9.4 \mathrm{~cm}^{2}
$$

3. Calculate the shaded area, rounding your answer to one decimal place.

$$
(6 \times 5)-\left(\pi \times 2.5^{2}\right)=10.4 \mathrm{~cm}^{2}
$$

4. Calculate the area of the shaded sections, rounding your answer to one decimal place.

$$
5.5^{2}-\left(\pi \times 2.75^{2}\right)=6.5 \mathrm{~cm}^{2}
$$

5. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
(6 \times 4)+\pi \times 2^{2}=36.6 \mathrm{~cm}^{2}
$$

6. Calculate the area of the compound shape, rounding your answer to one decimal place.

$$
\begin{aligned}
& 0.5 \times(2+4) \times 3=9 \mathrm{~m}^{2} \\
& 7.5-(3+1)=3.5 \mathrm{~m} \\
& 3.5 \times 2=7 \mathrm{~m}^{2} \\
& \frac{\pi \times 1^{2}}{2}=1.57 \ldots \mathrm{~m}^{2} \\
& 9+7+1.57 \ldots=17.6 \mathrm{~m}^{2}
\end{aligned}
$$

7. Calculate the area of the shaded sections, rounding your answer to one decimal place.

Diameter $=6 \mathrm{~m}$
$10-6=4 m$

Height of each triangle is $4 \div 2=2 \mathrm{~m}$
$2(0.5 \times 2 \times 6)+\left(\pi \times 3^{2}\right)=40.3 \mathrm{~m}^{2}$
8. Calculate the area of the shaded sections, rounding your answer to one decimal place.

$3.5-1.2=2.3 m$
Base of each triangle is $2.3 \div 2=1.15 \mathrm{~m}$
Height of each triangle is $2-0.6=1.4 m$
$2(0.5 \times 1.15 \times 1.4)+\left(\pi \times 0.6^{2}\right)=2.7 \mathrm{~cm}^{2}$
9. Four concentric circles are redrawn as individual circles. The smallest circle has a diameter of 6 cm in length. The radius of each circle increases by one centimetre for each circle.
Calculate the total area of the four individual circles, leaving your answer in terms of pi.
The radii of the circles are $3,4,5$ and 6 cm .
$\left(\pi \times 3^{2}\right)+\left(\pi \times 4^{2}\right)+\left(\pi \times 5^{2}\right)+\left(\pi \times 6^{2}\right)=86 \pi \mathrm{~cm}^{2}$
10. Three congruent circular holes are cut out from a rectangular piece of paper. The paper has a length of ten centimetres and a width of seven centimetres. The circles each have a radius of 2 cm and do not overlap. Calculate the area of the remaining shape, leaving your answer in terms of pi.
$10 \times 7=70 \mathrm{~cm}^{2}$
$\pi \times 2^{2}=4 \pi \mathrm{~cm}^{2}$
$4 \pi \times 3=12 \pi \mathrm{~cm}^{2}$
Area $=70-12 \pi \mathrm{~cm}^{2}$

Compound Shapes

1. The diagram shows a compound shape made up of a rectangle and square. Calculate its area.

\qquad
\qquad
\qquad
2. The diagram shows a compound shape made up of a rectangle and square. The area of the square is $16 \mathrm{~cm}^{2}$. Calculate the area of the compound shape.

\qquad
\qquad
\qquad
3. The diagram shows a compound shape made up of a rectangle and square. The area of the compound shape is $22.5 \mathrm{~cm}^{2}$. Calculate the value of the length l.

\qquad
\qquad
\qquad
4. The diagram shows a compound shape made up of a rectangle and triangle Calculate the area of the compound shape.

\qquad
\qquad
\qquad
\qquad
5. A square hole is cut out of a grass lawn in order to plant vegetable seeds. Calculate the area of the lawn that is left over.

\qquad
\qquad
\qquad
\qquad
\qquad
6. The front view of a shed is shown. The rectangular cross-section, including the door, has a total area of $3.6 \mathrm{~m}^{2}$. Calculate the vertical height of the triangular roof.

7. Calculate the area of the cross-section of the triangular roof in question 6 .
8. A regular hexagon with an area of $32 \mathrm{~cm}^{2}$ is tessellated to form a pattern. How many hexagons are in the pattern if the total area is $480 \mathrm{~cm}^{2}$?

\qquad
\qquad
9. A shape is made up of two congruent triangles inscribed in a rectangle. The shape has a total area of $15 \mathrm{~cm}^{2}$ and a horizontal length of 5 cm . Calculate the total area of the two triangles.

\qquad
\qquad
10. Sammi sketches a rocket out of polygons. The vertical height of the rocket is 10 cm and at its widest it is 8 cm in length. Calculate the area of the rocket.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compound Shapes Answers

1. The diagram shows a compound shape made up of a rectangle and square. Calculate its area.

$$
(4 \times 5)+(5 \times 5)=45 \mathrm{~cm}^{2}
$$

2. The diagram shows a compound shape made up of a rectangle and square. The area of the square is $16 \mathrm{~cm}^{2}$. Calculate the area of the compound shape.

$$
\begin{aligned}
& \sqrt{16}=4 \mathrm{~cm} \\
& (8 \times 4)+16=48 \mathrm{~cm}^{2}
\end{aligned}
$$

3. The diagram shows a compound shape made up of a rectangle and square. The area of the compound shape is $22.5 \mathrm{~cm}^{2}$. Calculate the value of the length l.

$$
\begin{aligned}
& 22.5-3^{2}=13.5 \mathrm{~cm}^{2} \\
& 13.5 \div 3=4.5 \mathrm{~cm}
\end{aligned}
$$

4. The diagram shows a compound shape made up of a rectangle and triangle Calculate the area of the compound shape.

$$
\begin{aligned}
& 2.5 \times 3=7.5 \mathrm{~m}^{2} \\
& 4-2.5=1.5 \mathrm{~m} \\
& 0.5 \times 3 \times 1.5=2.25 \mathrm{~m}^{2} \\
& 7.5+2.25=9.75 \mathrm{~m}^{2}
\end{aligned}
$$

5. A square hole is cut out of a grass lawn in order to plant vegetable seeds. Calculate the area of the lawn that is left over.

$$
\begin{aligned}
& 3 \times 1.5=4.5 \mathrm{~m}^{2} \\
& 1.25^{2}=1.5625 \mathrm{~m}^{2} \\
& 4.5-1.5625=2.94 \mathrm{~m}^{2}(2 \text { d.p. })
\end{aligned}
$$

6. The front view of a shed is shown. The rectangular cross-section, including the door, has a total area of $3.6 \mathrm{~m}^{2}$. Calculate the vertical height of the triangular roof.

$$
\begin{aligned}
& 3.6 \div 3=1.2 m \\
& 3.1-1.2=1.9 m
\end{aligned}
$$

7. Calculate the area of the cross-section of the triangular roof in question 6 .
$0.5 \times 1.9 \times 3=2.85 \mathrm{~m}$
8. A regular hexagon with an area of $32 \mathrm{~cm}^{2}$ is tessellated to form a pattern. How many hexagons are in the pattern if the total area is $480 \mathrm{~cm}^{2}$?

$$
480 \div 32=15 \text { hexagons }
$$

9. A shape is made up of two congruent triangles inscribed in a rectangle. The shape has a total area of $15 \mathrm{~cm}^{2}$ and a horizontal length of 5 cm . Calculate the total area of the two triangles.

Height of the shape: $15 \div 5=3 \mathrm{~cm}$
Height of one triangle: $3 \div 2=1.5 \mathrm{~cm}$
Area of one triangle: $0.5 \times 5 \times 1.5=3.75 \mathrm{~cm}^{2}$
Area of both triangles: $2 \times 3.75=7.5 \mathrm{~cm}^{2}$
10. Sammi sketches a rocket out of polygons. The vertical height of the rocket is 10 cm and at its widest it is 8 cm in length. Calculate the area of the rocket.

Height of the trapezium is $10-(2+3)=5 \mathrm{~cm}$
The width of the triangle is 8 cm .
Area of the trapezium: $0.5 \times(5+4) \times 5=22.5 \mathrm{~cm}^{2}$
Area of the rectangle: $3 \times 4=12 \mathrm{~cm}^{2}$
Area of the triangle: $0.5 \times 8 \times 2=8 \mathrm{~cm}^{2}$
Total area: $22.5+12+8=42.5 \mathrm{~cm}^{2}$

